NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

THE ROLE OF VISCOUS FINGERING IN THE
SEPARATION MECHANICS OF THIN
INTERFACIAL LIQUID LAYERS

by
Christopher H. Rehkop

March 2000

Thesis Advisor: _ Ashok Gopinath

Approved for public release; distribution is unlimited.

a0t 1

DTI0 Qua L1y
INEPECTED 4




REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0138

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503,

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 2000 Master’s Thesis
4. TITLE AND SUBTITLE: 5. FUNDING NUMBERS

The Role of Viscous Fingering in the Separation Mechanics of
Thin Interfacial Liquid Layers

6. AUTHOR(S)

Rehkop, Christopher H.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed here are those of the authors and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)
The mechanics of separation of a thin interfacial liquid layer trapped between two parallel surfaces was

studied in a controlled manner. Different liquid viscosities, layer thicknesses and separation velocities were
used to investigate the extensional behavior and determine its dependence on viscous fingering, and
Capillary number. Force, displacement and time data have been recorded for all experimental runs.
Qualitative visual data have also been recorded to corroborate the trends in the onset of viscous fingering
based on a simple interfacial stability analysis. The quantitative data has been used to generate force-
displacement plots of the separation. The results of this work provide useful fundamental insight into the
mechanics of this novel problem.

14. SUBJECT TERMS 15. NUMBER OF
Thin Interfacial Liquid Layers, Capillary Number, Surface Tension, Viscous Fingering, Saffman PAGES 64
Instability, Hele-Shaw Flow, Creeping Flows
16. PRICE CODE

17. SECURITY 18. SECURITY CLASSIFICATION | 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF OF THIS PAGE CLASSIFICATION OF ABSTRACT :
REPORT Unclassified ABSTRACT UL
Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102



ii



Approved for public release; distribution is unlimited

THE ROLE OF VISCOUS FINGERING IN THE SEPARATION MECHANICS
OF THIN INTERFACIAL LIQUID LAYERS

Christopher H. Rehkop
Lieutenant, United States Navy, CEC
B.S., The Pennsylvania State University, 1993
Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2000

Author: L PaAY
@hristopher H. Rehkop

Approved by:

Ashok Gopinath, Thesis Advisor

AT

rry B. McNelly, Chairman
Department/of Mechanical Engineeri

ii



iv



ABSTRACT

The mechanics of separation of a thin interfacial liquid layer trapped between two
parallel surfaces was studied in a controlled manner. Different liquid viscosities, layer
thicknesses and separation velocities were used to investigate the extensional behavior
and determine its dependence on viscous fingering, and Capillary number. Force,
displacement and time data have been recorded for all experimental runs. Qualitative
visual data have also been recorded to corroborate the trends in the onset of viscous
fingering based on a simple interfacial stability analysis. The quantitative data has been
used to generate force-displacement plots of the separation. The results of this work

provide useful fundamental insight into the mechanics of this novel problem.
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I. INTRODUCTION

The original studies on the instability of the interface between two liquids were
carried out in the late 1950s, when water was pumped down into an apparently ‘dry’ oil
field to push up the remaining oil. The belief was that the oil being lighter than water
would rise, although in reality the interface between the water and oil was unstable and
fingers of water penetrated up through the ground leaving the oil down below. It was
shown by Taylor (1958), and Saffman and Taylor (1958), in a now classic study that the
phenomenon could be explained by a simple analysis based on Darcy’s law for flow of a
viscous fluid through a homogeneous porous medium.

The study of the motion of fingers of a less viscous fluid through a more viscous
fluid in a Hele-Shaw cell (i.e. in a narrow gap between parallel plates.) is a paradigm in
applied mathematics. It has raised questions at all levels. By choosing the proper
equations of motion, it can be solved analytically or numerically. Considerable
experimental evidence has also been gathered for various scenarios. Continuing
disagreement with experiments leads to modifications of the assumptions and
approximations employed by the theory until good agreement is reached to help
understand the phenomenon (Saffman, 1991).

It has been shown that for a channel of given aspect ratio (width/thickness of the
layer), it was found for the case wheﬁ the viscosity of the displacing fluid is negligible
that the shape and width of the fingers depend only on the Capillary number (Ca). A way
to measure the ratio of viscous forces to surface tension is through the use of the
Capillary number (Ca = pU/c). If the capillary number remains small (10-10), the

surface tension effects are expected to dominate the flow. The combination of the liquid



viscosity and interface velocity could be chosen in such a way that the capillary number
would be in the above limits. Also, by keeping the aspect ratio large (D/ly >>1), the fluid
mechanics in the layer could be restricted to essentially one-dimensional behavior.

In this experiment, the approach to the problem is different. A tensile force is
applied to a layer of liquid trapped between two circular parallel disks and the force-
displacement behavior is studied vis-a-vis the onset of viscous fingering. A wide range
of viscosities, separation velocities and initial liquid layer thicknesses are explored.

A variation of the Saffman-Taylor instability analysis will be used to determine
the neutral stability curve and the most dangerous wavelength that grows into fingers, as
well as the number of corrugations (fingers) that form. Through experimental analysis of
the data, the interface velocity and the Capillary number at the point of viscous fingering
can be calculated with extreme accuracy and repetition.

Quantitative force-displacement data and qualitative visual data have been
gathered for this experimental study. Both forms of data have been used to make some

useful deductions of the mechanics of separation of thin interfacial liquid layers.



II. BACKGROUND

A. SURFACE TENSION

1. Theoretical Background

The effects of surface and interfacial tensions give rise to so many phenomena
observed in liquid behavior that the complex physical-chemical interacﬁons involved are
taken for granted and not all of which are understood even today. The liquid state itself is
composed of molecules in motion that are kept relatively close to each other by attractive
Van der Waals forces. However, a principal method of analysis of problems of
interfacial effects rests upon the assumption that a mearn molecular field can describe the
liquid. It is assumed possible to define an element of the liquid that is small compared to
the range of intermolecular forces but large enough to contain a sufficient number of
molecules. This approximation implies that on average the attractive force on any
molecule in the liquid is the same in all directions giving to the liquid its fluid
characteristics (Probstein, 1989).

2. Liquid-Gas Interface

At a liquid-gas interface although the molecules are free to move in the liquid,
their motion is far more restricted than in a gas where there is a little amaction between
the molecules. Therefore the attraction between the liquid molecules will prevail and
prevent the liquid molecules from escaping into the gas. As a result, the liquid molecules
at the surface are attracted inward and normal to the liquid-gas interface, which us
equivalent to the tendency of the surface to contract.

If the interface is curved, a mechanical balance shows that there is a pressure

difference across the interface. The pressure is higher on the concave side. Two surface



tension forces balance the pressure increase in the interior. For an arbitrary curved
interface whose principal radii of curvature are R and R; and have a surface tension o.

A force balance normal to the surface will show that the pressure differential is

1 1
Ap = O'(E+ Ez—) | (1)

The previous equation is known as the Young-Laplace Equation. For a special case of a
spherical bubble or drop in immiscible liquids, a well-known result is obtained, where r is

the bubble or drop radius.
Ap=— @)

When a drop is placed on a plane solid surface, it will be in contact not only with
the surface but also with a gas such as air. The liquid may spread freely over the surface,
or it may remain as a drop with a specific angle of contact with the solid surface. A force
balance would involve both surface tension () and contact angle (6). If the contact angle
is less than 90°, the liquid is said to wet the solid; if the contact angle is greater than 90°,

the liquid is nonwetting (White, 1994).

Figure 1. Static Contact Angle Between Liquid and Gas Interface.



3. Capillary Number (Ca)

A dimensionless quantity which plays a significant role in determining the effect
at the interface of the liquid-gas boundary is the capillary number (Ca). The capillary
number measures the ratio of the viscous force to surface tension force and is defined by

A small capillary number indicates that the viscous forces are not dominating the flow,

Ca= viscous .force - pU 3)
surface tension force o

the surface tension acts as a stabilizing factor in examining the effects of viscous

fingering.

B. VISCOUS FINGERING
1. Theoretical Background
“An important instability phenomenon that has a widespread impo@ce in this
experiment is viscous fingering. This is essentially an instability of bounded creeping
flows, such as appear in a porous medium or a Hele-Shaw cell, when one fluid is
displaced by a second fluid of lower viscosity. Differential pressures imposed at the open
boundaries could be the driving mechanism for the flow. The fundamentals of creeping
flows and Hele-Shaw flows are first briefly reviewed before applying them to the viscous
fingering relevant to this study.
2. Creeping Flows
Some approximate solutions of the Navier-Stokes equations for a limited case
when the viscous forces are considerably greater than the inertia forces can be made.

Since the inertia forces are proportional to the square of the velocity whereas the viscous




forces are only proportional to its first power, it is easy to appreciate mathematically a
flow for which viscous forces are dominant. Under these conditions the Reynolds
number is very small and the inertia terms can be simply omitted from the equations of
motion as a first order approximation. It can be seen that the incompressible form of the

Navier-Stokes equations given by

Dw
p7t=—gradp+/zV2w 4

with the inertia terms neglected become

gradp = uV’w (5)

The same boundary conditions as the full Navier-Stokes equations must be introduced to
the system of equations, namely those expressing the absence of fluid slip at the walls.

3. Hele-Shaw Flows

A solution of the three-dimensional equations of creeping motion can be obtained
for the case of flow between two parallel flat walls separated by a small distance 2h. If a
cylindrical body of arbitrary cross-section is inserted between the two plates at right
angles so that it completely fills the space between them, the resulting streamlines is
identical with that in potentig.l flows about the same shape. It can be shown that the
solution for creeping motion then possesses the same streamlines as the corresponding

potential flow (Schlichting, 1979).



U/ ¢2h
=

Figure 2. Hele-Shaw Cell.

We select a system of coordinates with its origin in the center between the two
plates, and make the x, y-plane parallel to the plates, the z-axis being perpendicular to
them as in Figure 2. The body is assumed to be placed in é stream of velocity U, parallel
to the x-axis. |

From the continuity equation, assuming two-dimensional, incompressible, fully

developed flow
%: 0 %jﬂ 0 ©)
In addition, the x-momentum equation simplifies to
e 2

Integrating with respect to z and applying the boundary conditions, du/dz = 0 @

z=0andu=0 @ z ==h/2 leads to a velocity profile

15P1(2 hzj (8)
U= ———1z"~—




From the velocity profile the average velocity is obtained

2
T & ©)
124 ox

4. Viscous Fingering

The Saffman-Taylor instability at an interface could arise when two fluids of
different viscosity are pushed by a pressure gradient through a Hele-Shaw cell. The
instability is in many ways similar to the Rayleigh-Taylor ihstability; the primary
difference is that the equilibrium state in the former is a dynamic one, in which the

interface between the two fluids is moving rather than stationary (Faber, 1997).

\ Interface

Figure 3. Side View of Radial Hele-Shaw Cell.

Here we closely follow and adapt the development by Faber (1997). Suppose the
cell is horizontal, consisting of two parallel radial disks, gravitational effects can be
ignored. There is a pressure gradient, which drives the fluid in the radial (+r) direction
with some uniform velocity (U;). At equilibrium, the interface between the two fluids is

a concentric circle R = U;t. Where r < U, t, the fluid viscosity is denoted by p'; where r



>Ur t, the viscosity is given by p.  Using the Navier-Stokes equations in cylindrical
coordinates, the pressure gradient needed to maintain this motion of the two fluid regions
are given by
&'
Z_ -

124U, P 1240, (10)
d’ & 4

Where U, is the average interface velocity and d is the disk separation distance. The

pressures p' and p are not necessarily equal at the interface, because the interface may be

curved in the z direction.

p= —-1—?5—2[]1(7‘—- U,t)+ P, p= -—1—2';;—1]’0- U,t)+ D, an

Now suppose that the interface is perturbed in a way that at time t the nominally circular

interface lies at r = R, where

R=U_t+ (™ 12)

Interface
Figure 4. Plan View of Radial Hele-Shaw Cell.



There must be some corresponding perturbation in p’ and p, and it must have the
same periodicity in the r direction. Any perturbation can be expressed as an infinite sum

of wavelike functions. Since the perturbation cannot effect the pressure at large distances,

these pressure terms have the form

124U
- 52 . (r - U,t) +p, + Cetlr=v4)

(13)
1o,

== (r - U,t) + p, + Cetlrv)

where k = 2n/A, and C’ and C are constants to be determined by boundary conditions at

the interface. The boundary conditions, applicable in each case at r = R, and linearized by

omission of the higher order terms yield

!

U =U =

r

NN

R (14)
ot

P
124" &

d & X o
LA N . (15)
TP R

which corresponds to

d*k , d’k I e
120 ¢ T 12. T a e (16)
The pressure differential due to the interfacial surface tension is

2
p'-p=-0

52 - ok*0%( e™" (17)

10



The corresponding growth rate sy can be found to be

1, 1 [k ,
sk—é,k P ~/t+ﬂ'{ —U,k(ﬂ'ﬂ) (18)

It may be noted that the interface is stable for all values of k when p’ < p. When
B < ', ie. a viscous fluid is being displaced by a less viscous one, the interface can
become unstable. The neutral stability curve corresponding to zero growth rate shows

that it is marginally stable for the critical wavenumber k = k, where

, 120, (x' - ) .
k== (19)

So for wavelengths o > A, > A, the interface is unstable. The perturbation that grows the

fastest is when sy is 2 maximum, which yields the most dangerous wavelength as

(20)
k,
kmax - \/?_, or
A = 23 @h

This corresponds to a wavelength (Amax) Which is the fastest growing disturbance and

hence the one most likely to develop into fingers

A = 7d | ——— (22)
Ule' - 1)

11



The largest value of the wavelength, which is consistent with the circular geometry of the
flow cell of radius, r, is

Mo = 27 (23)

largest

Then for a given combination of interface velocity, gap separation, surface tension and
fluid viscosities, the most dangerous wavelength can be found and the number of fingers

that consequently appear can be calculated from

27r
N=T (24)
] —— 100000 cSt ||
— - 10000 cSt ||
- 0.2—: 1000 cSt
. —-200cSt  |!

A (m)
Figure 5. Growth Rate vs Wavelength (Radial velocity and Displacement Constant).

Figure 5 is a typical plot of the growth rate as a function of wavelength for a
given separation velocity. The plot clearly shows that the viscosity of the fluid affects
growth rate and its magnitude increases with increasing viscosity. It can also be said that
the maximum growth rate is not only larger, but the peak is also more pronounced, for

higher viscosities.

12



C. PREVIOUS STUDIES

The paper by Paterson (1981) is the only earlier study to have ‘dealt with radially
driven flow in a circular Hele-Shaw cell. An approximate equation for the growth of
viscous fingers was proposed. To model the initial growth of fingers, Darcy’s Law for
governing the velocity of flow in a porous medium or Hele-Shaw was used. An equation
for critical wavelength was obtained, and it was shown that if the circumference of the
injected- bubble was less than the critical wavelength the interface was stable and no
viscous fingering was present. In the review by Saffman (1991) the selection mechanism
and stability of fingers and bubbles in the Hele-Shaw Cells were discussed. The main
focus was to better understand the uncertainties with respect to anomalously thin fingers
and the nature of the finite amplitude of the instabilities. He suggested that the
uncertainty in the boundary conditions at the moving interface may be the cause for the
difference in the theoretical and experimental results. It was also noted that for unsteady'
ﬁngering the problem is not yet resolved and many open questions remain especially
since unsteady flows form singularities in finite time.

In a recent experimental study by Maxworthy (1989), the study of the stability of
the circular interface in a Hele-Shaw when air displaces a viscous oil has been used to
estimate the critical wavelength for large capillary numbers (Ca). A number of questions
have arisen about determining the exact boundary éonditions to be applied at the
interface, which was slightly modified in this experimental study. The experimental
results had a tendency to approach a wavelength that is a constant multiple of the gap
width for values of Ca greater than unity. The reasons for t}ns discrepancy are due to the

non-zero finite nature of the Reynolds number, and three-dimensional effects.

13
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III. OBJECTIVES OF THE PRESENT STUDY

The objective of the present study is to obtain some fundamental insight into the
onset of viscous fingering subjected to tensile forces. Unlike previous studies in this
field, the main focus is the mechanics of separation of a thin liquid layer trapped between
two parallel surfaces, which are being pulled apart at a constant velocity normal to the
liquid layer. There is no shear or compressive forces acting on the sample. A
mathematical equation is derived assuming a Hele-Shaw relationship for the onset of
viscous fingering, known as the critical wavelength. A similar relationship will also be
developed for the maximum growth rate of the viscous fingers, known as the maximum
wavelength, which will then determine the number of fingers produced. The velocity of
the interface and separation of the disks will be investigated. Experiments have been
conducted and will be correlated t(; the mathematical equation to the onset and maximum
growth of the viscous fingers. The work is experimental in nature and is aimed to gather
both qualitative and quantitative data. Experiments have been planned and conducted in a
way that some fundamental insights about the effects of critical wavelength interface
velocity, separation distance and fluid viscosity. This study also aims to analyze the

different competing regimes in the fluid deformation process.

15
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IV. EXPERIMENT

A. SELECTION OF THE MODEL SYSTEM

Since this experimental study involves a liquid layer in tension (normal to the
plane of the layer), the experimental apparatus was constructed to apply a purely tensile
~ force in the vertical direction. The initial separation of the plexi-glass disks in which the
liquid layer resides is about 100 pm. The stage that contained the plexi-glass disks was
constructed to ensure that the mating surfaces of the disks were parallel to one another.
The plexi-glass disks were also developed to ensure parallelism of their mating own
surfaces. The vertical travel of the positioning actuator was aligned to prevent any shear
force to develop during the experimental procedure. The alignment of the vertical
actuatorand plexi-glass disks were perfectly perpendicular to the direction of the
separation movement. Figure 6 shows the experimental apparatus, the supporting
structure was constructed of high grade aluminum and mounted on a permanent rigid

support platform to prevent any deviation from the normal.

Figure 6. Experimental Set-Up, Apparatus.

17




The experimental set-up was designed to gather both numerical and visual data.
One CCD camera was placed in the set-up to provide this required data. Since one of the
objectives of the experiment was to determine onset of viscous fingering, the CCD
camera was positioned to record the movements of the liquid layer from the bottom of the
plexi-glass disks. This camera was mounted on the vertical moving stage (to move
together with the disks) to prevent the focal length from changing during the operation of

the experiment (Figure 7). The CCD camera was connected to monitors for viewing and

recording.

18
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The computer was used to run and store data for latter use and analysis (Figure 8).
A software program written for this particular experiment controlled the vertical
movement of the actuator. The software program enabled us to control the actuator by the
computer and to maximize the accuracy of the experiment. From the control unit,
displacement of the discs, time and from the load cell, the force information was
recorded.

The experimental set-up was designed to give numerical data and visual data; the
visual data could be viewed and recorded via the CCD camera (Figure 9). The numerical
data was achieved through the use of a load cell, which was mounted on top of the upper
plexi-glass disk (Figures 10 and 11). The load cell is connected to an amplifier and
multi-meter. The load cell was used to measure the tensile load acting of the fluid; the

data was then stored into the computer for further analysis and plotting.

20



Figure 11. Close-up view from the top.
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B. EXPERIMENTAL SET-UP

This section introduces each component of the experimental apparatus and
includes a brief description of the component.

i. Silicone Oil

The “Series 200” range of silicone oils from Dow Corning was chosen to be the
most appropriate for the purposes of this experimental study. They were commercially
able to obtain, that provided a range of medium to high kinematic viscosities (50 -
100,000 cSt) without any appreciable change in surface tension and density. They were
easy and safe to work with, and they had advantageous chemical properties. Detailed
information about thesé liquids is presented in Appendix-A.

2. Positioning System

In order for surface tension to dominate viscous forces, the Capillary number
(Ca) must be small. For medium to high viscosity silicone oils, a small Capillary
number (107%-10%) requires velocities to be small as well. Figure 12 presents velocities
and Capillary numbers that are associated with different viscosity fluids.

The positioning system control unit was chosen to provide these small velocities.

The detailed information about the positioning system is presented in Appendix-B.

22



Capillary # vs. Velocity ( for diff. viscosities)
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Figure 12. Capillary number vs. Velocity plot.

3. Load Cell

From previc;us work ;:onducted by (Isik, 1999), the range of forces was already
known. Concerns that were critical in determining the type of load cell were, sensitivity,
minimum threshold level, resolution level, possible drifting in measurements with time,
signal output, size, accuracy, and ability of being used in tension. The specifications and

dimensions of the load cells are presented in Appendix-C.
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4. Optic Systems
Optical system of the experimental set-up is composed of a microscope that has a
lens magnification of 50X and one CCD camera connected to a monitor and/or a VCR.

The CCD camera was positioned to achieve a bottom view of the interfacial liquid layer.

C. EXPERIMENTAL PROCEDURE

Experiments have been conducted for 50, 100, 200, 10,000, 60,000, and 100,000
¢St silicone oils. For each silicone oil viscosity a large range of values were used for the
initial liquid layer thickness and the separation velocity. A brief list of the variables and

ranges are listed below.

LIQUID : Silicone oil, constant surface tension & density
LIQUID VISCOSITY (v) : 50, 100, 200, 10,000, 60,000, 100,000 cSt
LIQUID LAYER THICKNESS (I,) :25, 50, 100 (125), 200 (250), 312.5, 500 pm
SEPARATION VELOCITY (V) : 1.2 pm/s — 45.5 pm/s

Each experiment was conducted according to the following procedure and

schematic diagram of the apparatus is provide in Figure 13:

1) Experimental set-up was turned on to warm-up.

2) Computer program was started and control was transferred to the
keyboard.

3) The plexi-glass disks were separated to introduce silicone oil.

4) The silicone oil wés spread on the lower disk by an injector.
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Displacement (d)

Viscous Fluid (v)

5) The actuator was moved to position the plexi-glass disks to the desired
initial liquid layer thickness. It was made sure that there was no air bubbles in the
liquid, and that the liquid bad spread completely on both disk surfaces.

6) The velocity, step size and iterations were inputted into the computer
program. The computer recorded and d@splayed step number, time, displacement
and force in vdlts as output. Visual data could be monitored or recorded through
the CCD camera.

7 Each run was carried through until separation of the liquid layer occurred.
8) These data have been analyzed by using plots of the force-displacement

data force-Capillary number and the visual recorded data.

Stationary Top Support

Load Cell

Microscope (50X)

Plexi-Glass Disks

Inward Radial Velocity (V)

Movable Bottom Support

CCD Camera

Downward Velocity (V)

Figure 13. Schematic Diagram of the Experimental Set-up.
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V. RESULTS AND DISCUSSION

A.  INTRODUCTION

The experiments were carried out for a wide range of viscosities. A wide range of
separation velocities and initial liquid layer thicknesses were also tested. Viscosities
ranged from 50 ¢St to 100,000 cSt, separation velocities from 1 to 47.5 um/s, and initial
liquid layer thicknesses from 25 to 500 um were used. Appendix D presents 4the

combinations of these variables.

B. FORCE-DISPLACEMENT PLOTS

The following plots yield the resultant force as the liquid layer is being separated
at a constant velocity. The force increases almost linearly to a peak value (Fmax)‘ and
occuré at a plate separation distance (dmax) in the liquid layer as explained earlier. The
force then drops rapidly and almost instantly to a near zero (steady-state) value and
remains there with no further appreciable change. Visually, the sudden decrease in force
coincides in the onset of viscous fingering. The medium viscosity fluids (50 — 200 cSt)
did not show viscous fingering to the same extent of the high viscosity fluids (10,000 —
100,000), so the decline after the peak valu;e was more subtle.

After reviewing the force-displacement plots, Frax and dpax were dependent on
the initial liquid layer thickness (1), the separation velocity (V), the liquid viscosity (v),
and of course surface tension (a special feature of these siliconé oils is that the surface
tensions is relatively constant throughout the viscosities). Each one of these variables
were varied in order to achieve a relationship for Fyax and dpax.  The following figures
show the dependence of each of the variables for both the medium and high viscosity

silicone oils.
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1) Fmax, dyax oc v

For a given initial liquid layer thickness (I,) and separation velocity (V), peak
force (Fmax) and the location of the peak force (dmay), increase with increasing liquid
viscosity (v) as shown in Figures 14 and 15. The magnitude of the force differs greatly
between the high and medium viscosity silicone oils. This result may be interpreted as

the extent of the onset of viscous fingering in the fluid yields greater forces.

0.08 e
LB\ —e — Viscosity = 50 cSt
N —=— Viscosity = 100 cSt
"1 7\ |—=— Viscosity = 200 cSt | |

oos ] AN ]

force (Ibf)

0.02 —‘//

0.0 0.1 0.2 0.3 0.4 0.5

displacement (mm)
Figure 14. Force-Displacement plot that shows the effect of medium viscosity fluids on Fpay and dy,, The
Initial Liquid Layer Thickness (I,) is 50um, and Separation Velocity (V) is 24um/s.
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Figure 15. Force-Displacement plot that shows the effect of high viscosity fluids on Fp. and dpa, The
Initial Liquid Layer Thickness (1,) is 312um, and Separation Velocity (V) is 12pm/s.

2) Fmax, dpax <V
For a given liquid viscosity (v) and initial liquid layer thickness (l,), peak force

(Funax) and the location of the peak force (dmax), increase with increasing separation

velocity (Figures 16 and 17).
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Figure 16. Force-Displacement plot that shows the effect of Separation Velocity on Fp,y and dy,, The
Initial Liquid Layer Thickness (1,) is 50um and Viscosity (v) is 50 cSt.
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Figure 17. Force-Displacement plot that shows the effect of Separation Velocity on Fy. and dy. The
Initial Liquid Layer Thickness (1,) is 500um and Viscosity (v) is 100,000 cSt.
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3)

the location of the peak force (dmay), increase with decreasing initial liquid layer thickness

Fmax, dpax oc 1/1y

For a given liquid viscosity (v) and separation velocity (V), peak force (Fmax) and

(lo) (Figures 18 and 19).

force (Ibf)

Figure 18. Force-Displacement plot that shows the effect of Initial Liquid Layer Thickness on Fpy, and d,
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Separation Velocity (V) is 24pm/s and Viscosity (v) is 50 cSt.
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Figure 19. Force-Displacement plot that shows the effect of Initial Liquid Layer Thickness on Fp,y and dpgy
Separation Velocity (V) is 4.5um/s and Viscosity (v) is 100,000 cSt.

4) - A Physical Model

A model of the force-displacement behavior in the separation mechanics of the
layer can be developed based on a creeping flow analysis of the governing Navier-Stokes
equations in axisymmetric cylindrical coordinates. The slow motion allows a quasi-
steady analysis in which viscous effects are balanced by pressure gradients while inertia
effects are negligible. The analysis follows the model problem suggested by Batchelor
(1967) or Landau & Lifshitz (1987) and indicates that the separating motion of the two
disks éreates a negative suction pressure in the liquid layer gap thus resulting a resisting
clamping effect opposite to the direction of separation. This resistive force is proportional
to liquid viscosity and separation velocity, and inversely proportional to the cube of the

liquid layer thickness at any instant, a feature that is qualitatively borne out by the current
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study. However a more thorough corroboration between model and experimental data

will be considered in future work once more extensive data has been gathered.

C. VISCOUS FINGERING

It was proven that at the instant viscous fingering occurs, the Iinterface in no
longer stable. The interface motion is driven by the separation of the two disks. Surface
tension serves as a stabilizing entity between the two immiscible fluids. From the
discussion in the early chapter on the Saffman-Taylor instability, a critical wavelength
was determined at the onset of viscous fingering. At the onset of viscous fingering a
number of disturbances develop along the interface called corrugations. At this point
the surface tension can no longer stabilize the interface and it is no longer undistorted and
circular. The interface is now unstable and continues to grow unstable. If the instabilify
proceeds the interface is no longer balancing fhe difference in viscosities and pressure
differentials to surface tension, the number of corrugations has reached its maximum
value and coincides with the maximum resultant force. "From the Saffman-Taylor
instability analysis of the experimental radial Hele-Shaw the maximum wavelength and
number of corrugations were derived. The maximum wavelength is the largest
wavelength that gives rise to the viscous fingers that grow the fastest. In order to prevent
viscous fingering from occurring and leading to an unstable interface the critical
wavelength critical wavelength becomes an important measuring device of instability.

A comparison of various separation velocities and initial liquid layer thickness are
considered below. The maximum wavelength and number of corrugations for each run
was calculated and compared to the picture at the same instant. Table 1 contains the

calculated quantities.
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Kinematic 10000 10000 10000 10000
Viscosity (¢St)
Surface Tension 0.021 0.021 0.021 0.021
(N/m)
Radius (m) 0.0254 0.0254 0.0254 0.0254
Initial Liquid Layer 0.0002 0.0002 0.0003125 0.0003125
Thickness (m)
Displacement (mm) 0.029 0.051 0.0328 0.051
Radial Velocity 2.80x10™ 3.75x10% 2.24x10™ 3.0x10™
(m/s)
Separation Velocity 12x10°° 24x10°® 12x10° 24x10°°
(m/s)
Maximum 2.0x10” 1.90x107 3.36x107 3.05x107
Wavelength (m)
Number of 80 84 47 52
Corrugations

Table 1. Experiments conducted for 10,000 cSt Silicone Oil, Calculating Maximum Wavelength and

Number of Corrugations.

As initial liquid layer thickness (l,) decreases, viscous fingering becomes more

pronounced, leading to an increase in number of corrugations and a decrease in maximum
wavelength. Similarly, separation velocity (V) increases, viscous fingering becomes
more pronounced resulting in an increase in the number of corrugations and a decrease in
maximum wavelength.  Also, separation velocity (V) and the liquid viscosity (v) also
affect the degree of viscous fingering. Higher the separation velocity and liquid
viscosity, greater is the extent of viscous fingering.

The following pictures were taken at the maximum growth rate, although the
actual number of corrugations can be difficult to identify the same trend as shown above

for the maximum wavelength and number of corrugations can be seen.
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Figure 20. 10,000 cSt Silicone Oil, Initial Liquid Layer Thickness of 200um and Separation Velocity of
12um/s (Scale of 1div=1mm), N~80.

Figure 21. 10,000 cSt Silicone Oil, Initial Liquid Layer Thickness of 200pm and Separation Velocity of
24um/s (Scale of 1div=1mm), N~84.
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Figure 22. 10,000 cSt Silicone Oil, Initial Liquid Layer Thickness of 312.5um and Separation Velocity of
12pm/s (Scale of 1div=1mm), N=~47.

Figure 23. 10,000 cSt Silicone Oil, Initial Liquid Layer Thickness of 312.5um and Separation Velocity of
24pm/s (Scale of 1div=1mm), N=52.
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VI. CONCLUSIONS AND RECOMMENDATIONS

Well—d.eﬁned trends in the force-displacement behavior of thin liquid layers were
identified from the analysis of the rec;orded quantitative and qualitative data in this
experimental study. A wide range of viscosities were examined and all force-
displacement curves have lead to the observation of the presence of a peak force (Fax)
whose location and value depend on initial liquid layer thickness, separation velocity,
liquid viscosity, and surface tension.

The presence of the peak force is more pronounced and its occurrence coincides
with the onset of the viscoﬁs fingering mechanism. The approach to the peak force (Fmax)
on the force-displacerﬁent plot, is accompanied by an instantaneous and sudden decrease
in force which is followed by a near zero (steady-state) value with no further appreciable
change. The linear stability analysis allows a fairly accurate prediction of the onset of
the viscous fingering behavior and correlates well with the experimental data.

Further research on this subject is highly desirable to widen the parametric study
to other viscosity ranges and surface tension. A more accurate characterization of the
interface velocity is crucial to further the underStanding of the onset of viscous fingering
and its dependence on the Capillary number. A review and refinement of the analytical |
model‘ may also be conducted and balanced with the necessary boundary conditions,
which could lead to corroboratioﬁ with the different observed regimes.

In addition, a more advanced and integrated testing apparatus with better
measurement abilities of the interface velocity, layer thickness, actuator motion and
interface flatness and parallelism is required. It would also be desirable to increase the

data acquisition rate to at least the milli-second level in order obtain more accurate force-
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displacement information. The use of an optical grade glass, instead of plexi-glass, for
the disk would be advantageous to ensure smooth, flat and parallel, and hard (scratch-

resistant) surfaces.
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APPENDIX - A

SILICONE OIL

Medium Viscosity Silicone Fluids:

200° Fluid, 50 ¢St

200° Fluid, 100 cSt

200° Fluid, 200 cSt

High Viscosity Silicone Fluids:

200° Fluid, 10,000 cSt

200° Fluid, 60,000 cSt

200° Fluid, 100,000 cSt

Description:

200® Fluids from Dow Corning, 50 — 1,000 centistokes (cSt) are medium, and
10,000 — 100,000 centistokes (cSt), are high viscosity polydimethylsiloxane polymers
manufactured to yield linear polymers with average kinematic viscosities ranging from
50— 1000 ¢St and 10,000 — 100,000 cSt.

Composition:

'Linear polydimethylsiloxane polymers characteristically have the following
typical chemical composition:
| (CH3)3SiO[SiO(CH3),]Si(CHy);

Commercial bulk polymerized dimethl silicone fluids, such as 200® Fluids typically
contain trace amounts of process impurities.

Benefits:

200® Fluids, 50 — 100,000 cSt, have the following product characteristics;

» Clear » Nongreasy » Nonocclusive
» Non-stinging on skin
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200° F luids, 50 — 100,000 cSt, when compared with other materials that may be

substituted in a given application, may offer one or more of these comparative

characteristics:

» High compressibility » High damping action

» High oxidation resistance = High shear-ability without breakdown
» High temperature serviceability = High compatibility

» High spreadibility » High water repellency

» Low fire hazard » Low odor

» Low reactivity » Low surface energy

= Low temperature serviceability =~ » Low vapor pressure
» Good heat stability » Soft feel and lubricity on skin

» Good leveling and easy rubout
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APPENDIX - B

POSITIONING SYSTEM

Model 855 Programmable Controller System (Newport Corporation)

The Model 855 Programmable Controller is a microprocessor-based system that
allows simultaneous direct or programmable control of up to four Newport linear
actuators or rotary stages. It is simple but powerful vocabulary of mnemonic commands
allows straightforward pro gramming and control via the handheld 855K Keypad/Display.

The 855C Controller:

The 855C Programmable Controller is the nucleus of a system that automatically
controls up to four Newpbrt precision positioners and stages. Its large, easy-to-learn
instruction set and standard RS-232C and IEEE-488 interface ports allow it to work
closely with external computers and other data devices. Its programmability provides
stand-alone automatic control of actuator motion, yet no knowledge of programming
techniques is required. It also supports the optional 855K handheld Keypad/Display for
convenient data entry, control and program editing.

Specifications:

Actuator Control: Provides +15 VDC, 1.5 Amp power and +10V velocity control

signals for up to 4 Newport linear positioning devices. Receives
and decodes dual output, 90° phase, +12.5, -0.5 V encoder pulses

and limit signals.
CPU: 8 bit 6809 high-performance micro-processor
RAM: 4 Kbytes
PROM: 24 Kbytes
EPROM: 2 Kbytes
I/O: RS-232C Serial Port/IEEE-488 Parallel Port
Power: 110-220 VAC, 50/60 Hz and 850 mA with all actuators fully
, loaded. '
Dimensions: 5.25” high X 17” wide X 12” deep
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The 855K Keyboard/Display:

The 855K can be used to completely control and program the 855C. It is handy
for manual control of actuator position and for the reviewing andvediting 855C programs.
Its backlit alphanumeric liquid-crystal display shows position information for the four
drivers, programming instructions for the 855C, and messages from the 855C. The
855K’s keypad has 35 durable, tactile-response membrane keys for command and data
entry. The 855K connects to the 855C via a coiled cable.

The Linear Actuators:

The 855C is compatible with Newport’s 850 Series Linear Actuators. Each of
these devices use DC motor drives with integral optical encoders for smooth operation
and high resolution. The 855C fully supports their resolution and range. Only one

actuator is used for this experimental study.
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APPENDIX - C
LOAD CELL
Since the viscosities of the fluids differed greatly from 50 ¢St to 100,000 cSt,
there was a need to use two different load cells for the experiments. For higher
viscosities an MLP-100 (100 Ib maximum load) and for the lower viscosities the MDP-
2.5 (2.5 b maximum load) were used. The specifications are listed below for each load

cell.

MLP-100 Specifications:

MINI LOW PROFILE LOAD CELL
UNIVERSAL | TENSION OR COMPRESSION

The model MLP Series load cells were designed with economy as first priority.

The MLP Series are anodized aluminum with a unique low profile design, which

provides excellent stability for in line application for tension and/or compression.

10 & CONDUCTOR COLOR CODED,
SHIELDED CABLE SUPPLIED

THREAD TYPICAL
B0TH ENDS
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DIMENSIONS (INCHES)
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MDB-2.5 Specifications:

ULTRA PRECISION MIN! LOAD CELL
UNIVERSAL | TENSION OR COMPRESSION

The MDB Series was designed to help fill the growing need for a greater selection
of high accuracy load cells for use in space limited applications. The anodized aluminum
MDB's are compliant tension and compression, therefore, a good choice for in line

through zero applications, as well as single direction tension or compression.

MICROTECH CONNECTOR

WITH 10" 4 CONDUCTOR, o
COLOR CODED, SHIELDED S
CABLE SUPPLIED —\ Cimm
'\gm-za UNF .
250 DEEF BOTH ENDS

SPECIFICATIONS
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APPENDIX -D

EXPERIMENTAL DATA
48
24
Initial Liquid Layer Velocity 12
Thickness (1,) 4.5
25um (pm’s) 24
1.2
48
24
Initial Liquid Layer | Velocity 12
Thickness (1,) (um/s) 4.5
50um ) 24
1.2
48
24
Initial Liquid Layer | Velocity 12
50,100,200 | Thicknessd) | (umis) .

pm .

cSt 1.2
Silicone Oil 48
~ 24
Initial Liquid Layer | Velocity 12
Thickness (1) (wm/s) 45
200um 2.4
1.2
48
24
Initial Liquid Layer Velocity 12
Thickness (1,) (um/s) 4.5
312pum 2.4
1.2
48
24
Initial Liquid Layer | Velocity 12
Thickness (1,) (um/s) 4.5
500um 24
1.2

Table 1. 50, 100, 200 cSt silicone oils and their varying parameters.
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48

24

Initial Liquid Layer Velocity 12

Thickness (1,) 4.5

125um (nmy/s) 2.4

1.2

48

24

Initial Liquid Layer | Velocity 12

Thickness (I,) (nm/s) 4.5

10,000, 250um 2.4
60,000, 1.2
100,000 cSt | 48
Silicone Oil 24
Initial Liquid Layer | Velocity 12

Thickness (1,) (um/s) 4.5

312um %;

48

24

Initial Liquid Layer Velocity 12

Thickness (1,) (um/s) 45

500pum 24

1.2

Table 1. 10,000, 60,000, 100,000 cSt silicone oils and their varying parameters.

48



LIST OF REFERENCES

Batchelor, G. K., 4n Introduction to Fluid Dynamics, Cambridge University Press, 1967.
Landau, L. D. and Lifshitz, E. M., Fluid Mechanics, Pergamon Press, 1987.
Faber, T. E., Fluid Dynamics for Physicists, Cambridge University Press, 1997.

Maxworthy, T., Experimental Study of Interface Instability in a Hele-Shaw Cell, The
American Physical Society (1989), vol. 39, 11.

Paterson, Lincoln, Radial Fingering in a Hele-Shaw Cell, Journal of Fluid Mechanics
(1981), vol. 113, 513-529.

Probstein, Ronald F., Physicochemical Hydrodynamics, Butterworths, 1989.

Saffman, P. G., Selection Mechanisms and Stability of Fingers and Bubbles in Hele-Shaw
Cells, IMA Journal of Applied Mathematics (1991), 46, 137-145.

Saffman, P. G. and Taylor, G. L, The Penetration of a Fluid into a Porous Medium or
Hele-Shaw Cell Containing a More Viscous Liquid, Proc. R. Soc. Lond., 1958.

Schlichting, Herman, Boundary Layer Theory, McGraw-Hill, Inc., 1979.

Isik, Sefa, A Preliminary Experimental Study of the Behavior of Liquids under Tension,
Master’s Thesis, Naval Postgraduate School, Monterey, California, June 1999.

Sherman, Frederick S., Viscous Flow, McGraw-Hill, Inc., 1990.

Taylor, G. I, Cavzty Flows of Viscous quuzds in Narrow Spaces, Proc. 2™ Symp., Naval
Hydrodynamlcs 1958.

—~

Taylor, G. I. and Saffman P. G., 4 Note oﬁ the Motion of Bubbles in a Hele-Shaw Cell
and Porous Medium, Q. J. Mech. Appl. Math., 1958.

White, F. M., Fluid Mechanics, McGraw-Hill, Inc.,3™ Ed., 1994,

49




THIS PAGE INTENTIONALLY LEFT BLANK

50



INITIAL DISTRIBUTION LIST

Defense Technical Information Center...............ovveemmeneneni...

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library............cocoviimeeemiiiesieeiies

Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

Chairman, Code ME.........c.oouininiiiiieioeoee e

Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

Professor Ashok Gopinath, Code ME/GK.........cc...ovevuevvnio

Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

Naval/Mechanical Engineering Curricular Office, Code 34........

Naval Postgraduate School
Monterey, CA 93943-5000

Commanding Officer (Code C35).........ovvuviimmeeneeaieeanannnn.,

Naval School, Civil Engineer Corps Officers
Naval Construction Battalion Center
Port Hueneme, CA 93043

Christopher H. RehKOp.........covvviiiiiiiiiii e,

6104 Summit Pointe Road
Harrisburg, PA 17111

51

................



